
Title: Structural diversity and tree density drives variation in the biodiversity-1

ecosystem function relationship of woodlands and savannas2

Summary3

• Positive biodiversity-ecosystem function relationships (BEFRs) have been widely doc-4

umented, but it is unclear if BEFRs should be expected in disturbance-driven systems.5

Disturbance may limit competition and niche differentiation, which are frequently pos-6

ited to underlie BEFRs. We provide the first exploration of the relationship between7

tree species diversity and biomass, one measure of ecosystem function, across southern8

African woodlands and savannas, an ecological system rife with disturbance from fire,9

herbivores and humans.10

• We used >1000 vegetation plots distributed across 10 southern African countries, and11

structural equation modelling, to determine the relationship between tree species di-12

versity and aboveground woody biomass, accounting for interacting effects of resource13

availability, disturbance by fire, tree stem density and vegetation type.14

• We found positive effects of tree species diversity on aboveground biomass, operating via15

increased structural diversity. The observed BEFR was highly dependent on organismal16

density, with a minimum threshold of c. 180 mature stems ha-1. We found that water17

availability mainly affects biomass indirectly, via increasing species diversity.18

• The study underlines the close association between tree diversity, ecosystem structure,19

environment and function in highly disturbed savannas and woodlands. We suggest20

that tree diversity is an under-appreciated determinant of wooded ecosystem structure21

and function.22

Keywords: biodiversity, biomass, ecosystem function, forest structure, miombo, savanna,23

structural equation modelling, woodland.24

1 Introduction25

Understanding the relationship between biodiversity and ecosystem function has become a26

central endeavour in ecological science, as we seek to predict the consequences of global biod-27

iversity change (Naeem et al., 2012). Over the past two decades, study of the Biodiversity-28

Ecosystem Function Relationship (BEFR) has grown from small-scale experimental studies29

mostly in temperate grasslands (Cardinale et al., 2009; Tilman & Downing, 1994; Tilman30

et al., 2014), to observational studies in natural ecosystems (Plas, 2019). While positive BE-31

FRs which align with theory have been frequently reported, a complex picture has emerged32
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whereby the strength and direction of the BEFR varies depending on the ecosystem stud-33

ied (Liang et al., 2016), the ecosystem function(s) of interest (Hector & Bagchi, 2007), and34

the inclusion of environmental covariates in statistical models (Vilà et al., 2005). The goal35

now should be to study the BEFR in different environmental and ecological contexts, in36

order to develop an ecosystem-agnostic understanding of the complex interactions between37

biodiversity, abiotic environment, and ecosystem function.38

Ecosystem functions are defined in broad terms as rate processes and aggregate properties of39

ecosystems that describe the nature of biotic activity within those ecosystems (Jax, 2005).40

Woody productivity and biomass storage are two of the most commonly studied ecosystem41

functions in forests and other wooded ecosystems (e.g. savannas) (Brockerhoff et al., 2017),42

due to their importance in the global carbon cycle (Pan et al., 2011) and their potential43

leverage as a tool to mitigate the effects of anthropogenic climate change while maintain-44

ing biodiversity (Pichancourt et al., 2013). Theory predicts that biodiversity will have a45

positive effect on ecosystem function via three principal mechanisms: 1) niche complement-46

arity, whereby niche partitioning and ecosystem resource use efficiency is increased in diverse47

communities, minimising negative density dependent effects such as conspecific competition48

and abundance of species-specific natural enemies (Barry et al., 2019); 2) selection effects,49

whereby diverse communities are more likely to include a high-yield species; and 3) facilit-50

ation effects, whereby diverse communities are more likely to contain species combinations51

which enhance each others’ functional contribution (Wright et al., 2017).52

There has been extended debate on whether positive BEFRs should be expected in all wooded53

ecosystems (Liang et al., 2016). In temperate and wet tropical forests, where the majority of54

BEFR studies in natural forest ecosystems have been conducted (Plas, 2019), the mechanism55

of niche complementarity, which contributes the majority of the observed biodiversity effect56

(Poorter et al., 2015; Sande et al., 2017; Wright et al., 2017), hinges on the condition that57

conspecific competition between trees is the limiting factor to ecosystem functioning, but this58

may not hold true in all systems.59

Disturbance-driven mesic savannas and open canopy woodlands cover >20% of the global land60

surface (Pennington et al., 2018; Solbrig et al., 1996). They represent the dominant vegetation61

type in Africa, spanning >4 million km2 (Hopkins & White, 1987; Ratnam et al., 2011;62

Ryan et al., 2016) (Figure 1). Taken together, the above- and below-ground carbon stored in63

African mesic savannas may be comparable to that found in the wet forests of the Congo basin64

(Houghton et al., 2009; Mayaux et al., 2008; Spawn et al., 2020). Globally, dry woodlands65

and savannas represent the largest, most sensitive and fastest increasing component of the66

terrestrial carbon sink (Ahlstrom et al., 2015). Yet their carbon dynamics remain poorly67

constrained (Sitch et al., 2015).68

Despite their global importance, African savannas are severely under-represented in BEFR69

studies (Clarke et al., 2017; Liang et al., 2016). In savannas disturbance by fire (Lehmann70

et al., 2014) and herbivory (Sankaran et al., 2008; Levick et al., 2009) reduces woody stem71
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density and biomass, diminishing competitive interactions between individuals, allowing com-72

petitors to co-exist where they would normally be excluded (Grime, 1979; Keddy, 1990). It73

is possible that a threshold woody stem density exists below which the lack of competition74

precludes the detection of a biodiversity effect on ecosystem function via niche differenti-75

ation. Instead, stress tolerance and the functional contribution of particular species (selec-76

tion effects) may be the predominant biotic forces influencing ecosystem function in these77

ecosystems (Lasky et al., 2014; Tobner et al., 2016). Additionally, stressful environments78

appear to lessen the role of both niche complementarity and facilitation effects in driving the79

BEFR, by replacing competition between individuals with stress tolerance as the limiting80

factor on functional contribution (Ratcliffe et al., 2017; Paquette & Messier, 2010). This po-81

tential mismatch in the contribution of different mechanisms to the BEFR among resource-,82

disturbance-, and competition-limited ecosystems requires further investigation if we are to83

derive a generalisable BEFR.84

A number of studies in miombo woodlands, the dominant savanna type in southern Africa85

(Campbell, 1996), have found that above-ground woody carbon/biomass stocks correlate86

positively with tree species richness (McNicol et al., 2018; Shirima et al., 2015; Mutowo &87

Murwira, 2012). These studies however, lacked the spatial extent required to account for the88

interacting effects of variation in abiotic environment, disturbance regime, and biogeography89

which are expected to affect the BEFR. Studies of the BEFR often find that within a small90

spatial extent (<2500 km2), biodiversity shows a strong effect on ecosystem function, but at91

broader extents (>100,000s km2) biodiversity effects pale in significance compared to abiotic92

factors such as climate (Gonzalez et al., 2020). In West Africa, Mensah et al. (2020) found93

that woodlands and forests showed a positive effect of tree species richness on above-ground94

carbon, while sparse savannas did not, implying that tree stem density and the presence of95

dominant large trees may affect the strength of the observed BEFR. In the Brazilian Cerrado96

savanna, Loiola et al. (2015) found that disturbance by fire reduced tree productivity via97

its effect on functional trait values. Furthermore, Carvalho et al. (2014) found that disturb-98

ance by fire in the Brazilian Cerrado reduced soil fertility, causing an indirect effect of fire99

frequency on functional trait diversity via soil fertility. Other studies focussing on the herb-100

aceous diversity in disturbance-prone grasslands in North America and Europe have shown101

that disturbance by fire, mowing and herbivory reduces herbaceous productivity (Grace et al.,102

2007), allowing weak competitors to co-exist where otherwise they would be excluded (Ma-103

son et al., 2011), thus weakening the observable BEFR. Thus, there is a case that in highly104

disturbed systems, a relationship between diversity and ecosystem function may not exist105

at all. While these studies together offer some glimpse into how the BEFR may operate in106

disturbance-prone systems, none provide a full and comprehensive assessment of the interact-107

ing effects of diversity, abiotic environment, disturbance and ecosystem function, particularly108

for wooded ecosystems. Additionally, due to differences in community assembly, evolutionary109

history and contemporary drivers between the neotropics and the African tropics, inferences110

from one continent cannot necessarily be applied to the other (Dexter et al., 2015).111
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In this study, we make the first known estimation of the Biodiversity-Ecosystem Function112

Relationship (BEFR) in disturbance-driven wooded ecosystems (savannas and woodlands),113

using southern Africa as our study region. We aim to understand the synergistic effects of114

environmental and biotic drivers of variation in the BEFR, with a view to creating a general115

model of the BEFR in disturbance-prone wooded ecosystems, which is currently lacking in116

the BEFR literature. We posit three hypotheses: (1) water availability and soil fertility117

will indirectly positively affect woody biomass via an increase in tree species diversity, (2)118

the effect of tree species diversity on woody biomass will increase with organismal density119

(number of stems ha-1), with competitive interactions becoming more pronounced as stem120

proximity increases. Relatedly, we expect that an increase in disturbance by fire will decrease121

organismal density and therefore competition, weakening the effect of tree species diversity on122

woody biomass. Finally, we expect that (3) tree species diversity will increase tree structural123

diversity due to inter-specific variation in size strategy (i.e. physiognomic diversity), providing124

an indirect path by which tree diversity increases woody biomass.125

2 Materials and Methods126

2.1 Study location127

The study used 1235 woodland monitoring plots from a larger pool of 5395 plots in the larger128

SEOSAW database (SEOSAW, 2020), located across 10 countries within southern Africa in129

the miombo ecoregion (Figure 1, Hopkins & White, 1987). The study area spans the core130

climate space of the region, with a precipitation gradient from c. 460 mm y-1 in southern131

Mozambique and southern Zimbabwe to c. 1700 mm y-1 in northern Zambia, Malawi and132

northern Mozambique. A 2D convex hull of Mean Annual Precipitation (MAP) and Mean133

Annual Temperature (MAT) of the study sites covers 96.5% of the pixel-wise climate space134

of the miombo woodland ecoregion (Hopkins & White, 1987), using WorldClim estimates135

of Mean Annual Temperature (MAT, BIO1) and Mean Annual Precipitation (MAP, BIO12)136

between 1970 and 2000 with a pixel size of 30 arc seconds (926 m at equator) (Fick & Hijmans,137

2017).138

Plots were chosen from the SEOSAW database based on the quality and completeness of139

data collection, and plot configuration. Plot vegetation was identified under the broad term140

of ‘savanna’, which includes ‘woodland’, ‘savanna woodland’, and ‘tree savanna’, variously141

defined in other areas of the scientific literature and here referred to collectively as southern142

African woodlands, or savannas (Ratnam et al., 2011; Hill & Hanan, 2011). Plots with143

evidence of farming, human resource extraction, experimental treatments such as prescribed144

burning or herbivore exclusion, or containing termite mounds were excluded from the initial145

pool. Only plots >0.1 hectares were used in analyses, as area-based biomass estimation from146

small plots is highly influenced by rare large trees (Stegen et al., 2011), leading to inaccurate147
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biomass estimates. Only plots with a stem density >50 trees ha-1 (>10 cm stem diameter)148

were used, to ensure all plots represented woodland rather than ‘grassy savanna’, which is149

considered here a separate biome with very different species composition (Parr et al., 2014).150

3760 plots within the SEOSAW database were arranged in clusters of four 20x50 m plots,151

with 20 m between plots. Plots within each spatial cluster were combined and treated as a152

single plot in analyses, resulting in 940 aggregate plots which were then subject to the plot153

filtering process described above.154

2.2 Data collection155

We considered only trees and shrubs in our calculations of Above-Ground woody Biomass156

(AGB), including woody species such as palms and cycads, which are functionally tree-like.157

Woody lianas are scarce in our study plots and were not measured. Only living stems >10158

cm DBH (Diameter at Breast Height, 1.3 m) were included in analyses. Many plots in the159

dataset did not include data on stems <10 cm DBH. For those plots which contained stem160

measurements <10 cm DBH, small stems only accounted for a median of 2.1% of the plot161

AGB.162

All stems >10 cm DBH were measured within each plot resulting in a total of 66,758 stems163

with measurements. A tree may be comprised of multiple stems and so tree-level richness164

estimates, rather than stem-level estimates, were used to prevent bias from species which165

readily coppice. For each tree, we recorded species, tree height to the top of the highest166

branch material, and the DBH of each stem >10 cm DBH. Height was measured through167

a variety of means including laser rangefinders, manual clinometers and measuring sticks.168

When stem DBH could not be reliably measured at 1.3 m due to trunk abnormalities, it was169

measured at the closest regular portion of the trunk to 1.3 m. The height of this measurement170

was used to estimate diameter at 1.3 m using a cubic polynomial regression to account for171

stem taper, with parameters estimated using a test dataset from Ryan C., (unpublished), see172

Godlee et al. (2020).173

AGB for each plot (t ha-1) was calculated as the sum of the AGB of each stem >5 cm DBH174

(AGBi), divided by the plot area, using Equation 1 taken from Chave et al. (2014):175

AGBi = 0.0673× (ρD2H)0.976 × 1000 (1)

where ρ is the species mean wood density (g cm-3), D is the stem diameter (cm) measured176

or estimated at 1.3 m, and H is the tree height (m). Wood density estimates were taken177

from the global wood density database for each species where possible (Chave et al., 2009;178

Zanne et al., 2009). Wood density for species without species level estimates was estimated179

from the means of their respective genera. For stems where tree height was unknown, the180

plots’ climatic parameters, estimated from plot location, were used to estimate tree height,181
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according to Chave et al. (2014).182

Climatic data were taken from the WorldClim database (Fick & Hijmans, 2017), which uses183

ANUSPLIN to generate bioclimatic variables (Booth et al., 2014). In addition to MAT and184

MAP, temperature stress was calculated as the mean diurnal temperature range (BIO2) and185

precipitation seasonality was calculated as the mean of the coefficient of variation of monthly186

mean precipitation (BIO15). Soil fertility data were extracted from the ISRIC gridded soil187

information data product at 250 m resolution, taking the grid cell value for each plot centre188

(Hengl et al., 2017). We extracted Cation Exchange Capacity (CEC) (cmolc kg-1), soil organic189

carbon stocks (kg m-2) percentage soil sand content (0.05-2 mm) by weight and soil nitrogen190

content (g kg-1). These data are a modelled product derived from various remotely sensed191

and directly measured data sources. The degree of fire disturbance was calculated using the192

MODIS monthly burned area product at 500 m resolution (MCD64A1, Giglio et al. 2015),193

counting the total number of times the plot pixel was classified as burning, between 2001194

and 2018. We initially aimed to include disturbance by herbivory in our model, including195

total herbivore biomass from the Hempson et al. (2017) modelled herbivory product, but196

this inclusion prevented models from converging due to its collinearity with other observed197

variables, notably MAP and disturbance by fire.198

2.3 Data analysis199

2.3.1 Species diversity and structural diversity metrics200

Estimated tree species richness was calculated for each plot using ‘ChaoRichness()’ from201

the ‘iNEXT’ package in R (Hsieh et al., 2016). This procedure uses Hill numbers of the202

order q = 0 to extrapolate a species rarefaction curve to its predicted asymptote and uses203

this value as its estimated species richness value (Jost, 2006). Extrapolated species richness204

accounts for variation in plot size present in the dataset (0.1-10 ha) and therefore sampling205

effort among plots. Larger plots will tend to encompass more individuals, and therefore more206

species (Dengler, 2009). To measure tree species evenness, the Shannon Equitability index207

(EH′) (Smith & Wilson, 1996) was calculated as the ratio of the estimated Shannon diversity208

index to the natural log of estimated species richness. Abundance evenness allows for greater209

niche complementarity at small scales due to potentially increased heterogeneity of functional210

traits. In terms of the theory of niche complementarity, both species richness and abundance211

evenness contribute to the positive total diversity effect on ecosystem function. Holding212

either species richness or abundance evenness constant while increasing the other will have213

the similar effect of reducing the likelihood that a neighbour is a conspecific, thus reducing214

the occurrence of negative density dependent competition effects and therefore increasing215

ecosystem function. We quantified tree structural diversity for each plot by calculating the216

Coefficient of Variation of DBH (DBH CoV) and tree height (Height CoV).217

6



2.3.2 Vegetation clusters218

Plots were assigned to vegetation type groups based on tree species composition. Groups219

were defined in a manner adapted from Fayolle et al. (2018) in an Africa-wide analysis of220

floristic units using plot data in savannas and woodlands with tree species diversity and relat-221

ive abundance data. Group identification was conducted using unconstrained correspondence222

analysis, followed by hierarchical clustering based on dominant ordination axes. Plot data223

used in this study occurred in four compositional vegetation types. See Table 1 for a descrip-224

tion of each vegetation cluster and Figure 1 for the spatial distribution of plots from each of225

these clusters. Cluster names were assigned post-hoc based on the dominant and indicator226

species in each cluster.227

2.3.3 Structural Equation Modelling228

We used Structural Equation Modelling (SEM) to investigate the determinants of AGB. All229

SEMs were constructed and analysed in the ‘lavaan’ package (Rosseel, 2012) in R version 3.6.0230

(R Core Team, 2019). SEM was used because of its suitability for modelling complex causal231

interactions in ecological systems (Lee, 2007). A key aspect consideration in our decision to232

use SEM is that they can explicitly model and partition variance attributed to indirect effects,233

which is challenging in standard multiple regressions. Using SEMs also allowed us to describe234

latent variables such as ‘water availability’, ‘soil fertility’, and ‘disturbance’ which have been235

suggested to act upon biodiversity and biomass/productivity in previous studies despite these236

factors not having directly observable measures in our dataset. SEM is also necessary to237

properly account for potential feedback mechanisms between aspects of environment and238

tree species diversity, which could otherwise increase the chances of Type I error and wrongly239

attribute inference due to the covariance of explanatory variables when using conventional240

regression analyses (Nachtigall et al., 2003).241

We specified a conceptual model with factors expected to affect AGB: water availability,242

soil fertility, disturbance, tree species diversity, tree structural diversity and stem density243

(Figure 2).244

Observed variables were transformed to achieve normality where necessary and standardised245

to Z-scores prior to analysis (Figure S1, Figure S2). Standardisation allows path regression246

coefficients to be easily compared between paths in the same model to assess their relative247

effect size, and eliminates confusion in model interpretation arising from the observed vari-248

ables being on different scales (Beaujean, 2014). Standardisation also controls for variables249

with variation across different orders of magnitude, which could otherwise prevent adequate250

model estimation from the covariance matrix in ‘lavaan’. To ensure that observed variables251

within a latent variable had consistent directions of influence, some observed variables had252

their sign reversed. For example, overall water availability is expected to decrease as soil253

sand content increases, therefore sand content was reversed for use in the water availability254
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latent variable. Precipitation seasonality, and temperature stress were also reversed in this255

way to account for the direction of their effect on water availability.256

The factor loadings of the observed variable assumed to contribute most to each latent vari-257

able were set to one, as per convention, with other observed variables being allowed to vary258

(Beaujean, 2014). We tested the robustness of our assumptions with a chi-squared test of259

all possible combinations of observed variable factor loadings set to one, while ensuring no260

factor loadings were in excess of one. We found no significant difference between model spe-261

cifications (p >0.05). Full Information Maximum Likelihood (FIML) was used in each model262

to estimate the values of missing data in each latent variable (Cham et al., 2017).263

First, we used a simple mediation model which excluded the environmental covariates, to264

assess the role of tree species diversity and tree structural diversity in determining AGB.265

This model allowed direct effects of species diversity, structural diversity, and stem density266

on AGB, and also the indirect effect of species diversity on AGB via structural diversity.267

To explore variation in the model among woodland vegetation types, we fit the model both268

at the regional scale and for each vegetation type separately. We compared unstandardised269

path coefficients among the models for different vegetation types to understand the effect270

that vegetation type has on the relationship between tree species diversity, structural di-271

versity, stem density and AGB. Path coefficients show the effect of a given path with other272

paths held constant. Models were estimated using the ‘MLM’ estimator, because it is robust273

to multivariate non-normality (Shapiro, 1983). Model fit was evaluated using the robust274

Comparative Fit Index (CFI), the robust Tucker Lewis Index (TLI), the Root Mean Squared275

Error of Approximation (RMSEA) and the R2 coefficient of determination for AGB. We crit-276

ically assessed model fit in each case, taking into consideration the recommendations of Hu277

& Bentler (1999) who define threshold values of acceptability for these model fit indices: CFI278

>0.85, TLI >0.85, RMSEA <0.15, alongside our judgement of the model estimates.279

To explore the hypothesis that biodiversity effects on ecosystem function increase in strength280

as stem density increases, we repeatedly sub-sampled the available plot dataset to create281

50 data subsets with similar stem density. For each data subset we separately fitted a282

model including tree species and structural diversity latent variables to predict AGB. As we283

controlled for stem density via the dataset sub-sampling process, the effect of stem density on284

AGB was not included in the model. We examined how the unstandardised path coefficients285

for each path in the SEM varied according to the median stem density of the data subsets.286

Second, we fitted the full model with environmental covariates, to understand the relative287

effects of water availability, soil fertility and disturbance on AGB, both directly and indir-288

ectly via species diversity and stem density. We compared standardised path coefficients289

among paths in the model to understand the relative contribution of each path to explain290

variance in AGB. Due to sample size issues, and because some vegetation types were nar-291

row in their climate space, particularly in the water availability latent variable, we could292

not fit the model including environmental covariates separately for each vegetation type, as293
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we encountered issues with model convergence. Preliminary models that included herbivore294

biomass (Hempson et al., 2017) did not converge. This is possibly due to the spatially coarse295

nature of the available data, or to collinearity with other variables, notably MAP and fire296

frequency. We therefore did not include herbivory in our final model.297

3 Results298

Pairwise correlations between all observed variables used in the Structural Equation Models299

(SEMs) showed that all tree species diversity (extrapolated tree species richness, Shannon300

equitability index) and structural diversity (coefficients of variation of DBH and height)301

variables had moderate positive correlations with AGB (Figure 3, Figure S3). Stem density302

had the strongest correlation with AGB of all variables considered (r = 0.59, p <0.01).303

Environmental variables had weaker correlations with AGB than diversity variables, with304

all environmental variables having significant correlations with AGB, except fire frequency.305

The direction of these correlations was used as a test of our assumptions for the direction of306

influence of latent variables later used in the SEMs. MAP had positive correlations with all307

tree species diversity and structural diversity variables. Tree species diversity variables had308

clear positive correlations with stem density (species richness: r = 0.24, p <0.01; Shannon309

equitability: r = 0.58, p <0.01), but structural diversity variables showed weak correlations310

with stem density (DBH CoV: r = 0.11, p <0.01, Height CoV: r = 0.01, p = 0.86).311

3.1 Structural and species diversity models312

In the reduced SEM, which included stem density and the mediating effect of species diversity313

on AGB via structural diversity (Figure 4), species diversity showed no direct effect on AGB314

(β = 0.01±0.053, p = 0.88), but did have an indirect positive effect via structural diversity315

(β = 0.18±0.039, p <0.01) (Figure 4). Model fit was good with high factor loadings for all316

observed variables. All other path coefficients were significant (p <0.01) (Table 2). The R2
317

of AGB was 0.49. The strongest direct effect on AGB was from stem density (β = 0.5±0.033,318

p <0.01).319

3.2 Variation among vegetation types320

When the tree species and structural diversity model (Figure 4) was refitted separately using321

data from each of the four vegetation types, we found that the effect sizes of each latent322

variable remained largely similar, though model fit varied. The direct effect of tree species323

diversity on AGB was positive and marginally significant in ex-Acacia (β = 0.16±0.121, p =324

0.18) but negligible in Mopane (β = 0.24±0.099, p <0.05), sparse miombo / Baikiaea (β =325

0.23±0.045, p <0.01) and Core miombo (β = 0.23±0.041, p <0.01) (Figure 5). Relationships326
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among structural diversity and AGB remained generally similar, with the same sign and327

overlap between the 95% confidence intervals of path coefficients. The R2 of AGB was328

highest in ex-Acacia shrubland (R2 = 0.83) and lowest in sparse miombo / Baikiaea (R2
329

= 0.46). The total effect of species diversity on AGB remained strongly positive and there330

was a positive direct effect of species diversity on structural diversity, across all vegetation331

types. All models had adequate goodness-of-fit (Table 2), though confidence intervals around332

the unstandardised path coefficients were wide particularly for Mopane and ex-Acacia. χ2
333

statistics were high for some vegetation types, but this appears to be highly correlated with334

sample size for each vegetation type (Hooper et al., 2008).335

3.3 Moderation of Diversity-AGB relationship by stem density336

In the sub-sampling of the plot dataset by stem density, we found an increasing positive effect337

of tree species diversity on AGB as stem density increased (Figure 6e). There appears to338

be a minimum stem density threshold at c. 180 stems >10 cm DBH ha-1 below which there339

appears to be a reasonably constant baseline effect of tree diversity on biomass (Figure 6b).340

The effect of structural diversity on AGB appears to remain constant with increasing stem341

density (Figure 6d). The indirect effect of tree species diversity on AGB via structural342

diversity increases as stem density increases (Figure 6c).343

3.4 Environmental covariates and tree diversity344

A model incorporating the latent variables of water availability, soil fertility and disturbance345

by fire showed that the total effect of tree species diversity on biomass was similar to that of346

water availability, soil fertility and disturbance (Figure 7, Figure S4). The direct effects of347

water availability, soil fertility and disturbance on AGB were negligible (water: β = 0.1±0.13,348

p = 0.43, soil: β = 0.1±0.155, p = 0.51, disturbance: β = -0.04±0.043, p = 0.32), with nearly349

all of their observed effects on AGB coming from the indirect paths via stem density (water:350

β = 0.14±0.091, p = 0.12, soil: β = -0.22±0.109, p <0.05, disturbance: β = -0.12±0.03, p351

<0.01) and species diversity (water: β = 0.62±0.172, p <0.01, soil: β = -0.24±0.209, p =352

0.26, disturbance: β = 0.19±0.058, p <0.01). MAP and soil sand content had the greatest353

contributions to the latent variable of water availability. Model fit was acceptable: CFI =354

0.925, TLI = 0.900, and RMSEA = 0.153, R2 of AGB = 0.34.355

Similar to the model that only considered tree species and structural diversity (Figure 4), the356

direct effect of species diversity on structural diversity was positive, while structural diversity357

itself had a positive effect on AGB, leading to a strong positive indirect effect of species358

diversity on AGB via structural diversity (β = 0.19±0.026, p <0.01) when environmental359

covariates were accounted for. Again, the direct effect of species diversity on AGB was360

negligible (β = -0.05±0.041, p = 0.27). The total effect of species diversity on AGB was361
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positive (β = 0.34±0.044, p <0.01). Compared to the simple model with no environmental362

covariates, the total explanatory power of tree species diversity and structural diversity in363

this model decreased, but the predictive power of the model as a whole increased.364

4 Discussion365

We assessed the importance of a) tree species diversity, b) tree structural diversity, c) resource366

availability, d) disturbance by fire, e) organismal density and their interactions on above-367

ground woody biomass (AGB) across southern African savannas and woodlands, using a368

network of 1235 woodland plots in conjunction with Structural Equation Modelling (SEM).369

We found support for a general positive relationship between tree species diversity and AGB,370

operating indirectly via structural diversity (H1). Tree species diversity, structural diversity371

and stem density accounted for 49% of the variation in AGB across the region, while models372

for specific vegetation types showed even greater explanatory power in some cases (Table 2).373

Within the latent variable of tree species diversity we found similarly strong factor loadings for374

both species richness and abundance evenness. This demonstrates that species richness and375

abundance evenness measure different and largely uncorrelated axes of diversity. We found376

that the effect of tree species diversity on AGB increased with stem density (H2), with an377

apparent threshold of 180 stems >10 cm DBH ha-1, below which the effect of species diversity378

on AGB remained at a low baseline level. The strongest direct effect on AGB was that of379

stem density. When the effects of water availability, soil fertility and disturbance by fire were380

controlled for, the total explanatory power of tree species diversity and structural diversity381

decreased, but the predictive power of the model increased, suggesting that it is important382

to control for environmental covariates to understand the true effect of tree species diversity383

on AGB in regional scale assessments of the BEFR.384

4.1 Inter-related effects of tree species and structural diversity on385

AGB386

We found a consistent positive effect of tree species diversity on AGB. Within southern387

African woodlands we therefore find support for the hypothesis that higher tree species388

richness and evenness leads to higher above-ground woody biomass. This finding is in agree-389

ment with many other studies across different ecosystems and biomes, supporting the idea390

that there is a generalisable positive association between biodiversity and ecosystem func-391

tion (Liang et al., 2016; Cardinale et al., 2009). Our study provides a novel dissection of392

the mechanisms underlying this relationship, particularly in the context of southern African393

woodlands, a disturbance-driven and poorly studied ecological system.394

Much of the total variation in AGB was driven by variation in organismal density. It is pos-395
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sible that within southern African woodlands a higher species diversity allows for a higher396

stem density through niche separation, which reduces competition between species occupying397

varying niche space, leading to an increase in total AGB per unit area. The opposite caus-398

ation is also plausible however, with increased stem density causing higher species richness399

through an increased probability of encountering new species. We attempted to correct for400

the correlation between species richness and stem density using extrapolated species richness,401

which extrapolates a rarefaction curve to its predicted asymptote, thus estimating the total402

landscape-level species richness which is independent of plot size and stem density. We sug-403

gest therefore that an increase in tree species diversity through species richness and evenness404

produces an assemblage of species which can utilise more available light and moisture, result-405

ing in greater plot-level AGB. This is supported by the moderately strong indirect positive406

effect of tree species diversity on AGB via structural diversity, and the positive effect of water407

availability on AGB via stem density in the model which included environmental covariates.408

We found evidence that tree species diversity led to an increase in AGB indirectly via tree409

structural diversity, and we therefore find support for our second hypothesis H2. A higher410

tree species diversity allows for a greater structural diversity of trees, i.e. greater variation411

in DBH and height. This may act as a mechanism for niche complementarity, with a can-412

opy of diversely-sized trees able to take advantage of a greater proportion of the available413

light. Additionally, the volume of tree above-ground structures is generally correlated with414

the volume of below-ground structures (Paul et al., 2019). In water and nutrient limited eco-415

systems especially, variation in rooting depth may constitute a second related axis of niche416

partitioning driving the observed positive effect of above-ground structural diversity on AGB417

(Kulmatiski & Beard, 2013). Although we did not measure them here, we would also expect418

that tree species diversity allows for a greater range of tree functional forms (Pretzsch, 2014),419

i.e. wider variation in canopy shape and overall growth form; broad flat crowns vs. narrow420

deep crowns, for example. In forests, where the tree canopy is effectively closed, as the stand421

matures a more diverse canopy emerges via competition and tree mortality events which open422

canopy gaps (Muscolo et al., 2014). Indeed, our finding that the strength of the effect of tree423

diversity on AGB increases with stem density supports this mechanism (Figure 6). At low424

stem densities, competition between mature trees may not occur, meaning that the niche425

complementarity effect provided by an increase in tree species richness may not be present,426

accounting for the small effect of tree species diversity on AGB below c. 180 trees ha-1. In427

frequently disturbed woodlands such as those studied here, a woodland canopy similar to428

that of a forest is frequently not reached. Instead, a simple open canopy is maintained that429

can be made more complex and productive via an increase in species diversity.430

Alternatively, due to the non-linear relationship between biomass and tree size (Bastin et al.,431

2018), the positive relationship between structural diversity and biomass may also be partly432

driven by an increased number of large sized trees in plots with higher structural diversity,433

with large trees contributing disproportionately to biomass. The positive effect of species434
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diversity on AGB via structural diversity may therefore be due to selection effects, with435

higher diversity plots supporting larger trees due to species specific variation in functional436

form (Díaz et al., 2015).437

4.2 Organismal density and disturbance438

Disturbance by fire had a negative total effect on AGB, with most of this negative effect439

coming from the indirect pathway via stem density. This is expected as increased fire fre-440

quency is a key mechanism by which savannas maintain an open canopy, rather than shifting441

to a closed canopy forest (Staver et al., 2011). Previous studies have found that southern442

African woodlands with higher species diversity tend to experience less frequent disturbance443

by fire and tend to form a more closed canopy with a sparse understorey (Chidumayo, 2013;444

Mutowo & Murwira, 2012). In our study however, we found a positive effect of fire frequency445

on species diversity, perhaps suggesting that disturbance prevents domination of woodlands446

by a single dominant species (Chidumayo, 2013; Durigan et al., 2020; Staver et al., 2009). It447

is suggested that in savannas where the tree-species pool is largely adapted to fire, increased448

fire may actually increase tree species diversity by allowing weak competitors to co-exist.449

Disturbances such as fire have the potential to reduce both species diversity and above-ground450

biomass in the short term, due to increased mortality (Huston, 2014). Unless this effect is451

accounted for, there is the potential for mistaken causality as both diversity and biomass452

may correlate. In our model, time since disturbance is accounted for within each plot via the453

stem density term. Disturbance reduces stem density of large stems (>10 cm DBH), which454

is expected to increase until the effects of competition preclude further increase (Johnson455

et al., 2012). Furthermore, our rarefied measure of species diversity accounts for variation456

in sampling effort and is therefore independent of stem density. Tree species richness should457

also increase with time since disturbance as with increased stem density the likelihood of458

including a new species also increases. Outside of the stem density effect, there are multiple459

causes for variation in tree species diversity in this study. Vegetation types and localities460

differ in their available species pool, for example. Variation in abiotic environmental factors461

will also affect species accumulation.462

4.3 Effects of water availability and soil fertility463

Water availability had a positive total effect on AGB, comparable in size to the total effect464

of tree species diversity on AGB, while soil fertility had a negative total effect. We expected465

that higher water availability and soil fertility would lead to higher AGB under the assump-466

tion that higher resource availability would allow for a greater stem density per unit area,467

greater productivity per unit area and additionally greater tree species diversity due to niche468

partitioning (Kraaij & Ward, 2006; Shirima et al., 2015). Previous studies in tropical forests469

13



have shown that water availability increases AGB both directly and indirectly via increasing470

tree species diversity and via increasing stand structural diversity (Ali et al., 2019a; Ali et471

al., 2019b; Poorter et al., 2017). In this study, we observed indirect positive effects of water472

availability on AGB via species diversity and a positive but only marginally significant direct473

effect on AGB. Compared to moist tropical forests, water availability is more of a limiting474

factor to tree growth in southern African woodlands, which experience frequent drought.475

A negative total effect of soil fertility on AGB is in contrast to other studies in the region476

and general ecological theory, which predicts a positive effect of soil nutrients on biomass477

(Scarascia-Mugnozza et al., 2000). The negative total effect of soil fertility on AGB was478

driven mostly by an indirect negative effect via stem density. The direct effect on AGB479

however, remained positive and marginally significant, as expected. Model estimates of the480

effect of soil on AGB were poorly constrained compared with other latent variables. This wide481

standard error on the model predictions is possibly due to the coarseness and nature of the482

soil data we used. SoilGrids provides modelled data at 250 m resolution, while soil structure483

and nutrient content varies at much finer scales in southern African woodlands (Muledi et484

al., 2017; Bucini & Hanan, 2007). It is therefore not surprising that this model path is485

poorly constrained. Lehmann et al. (2014) found similarly weak and poorly constrained486

relationships for soil in a Structural Equation Model including precipitation, temperature,487

soil, and fire to predict tree basal area in southern African woodlands. Plot-specific soil488

data are time-consuming to collect and difficult to compare across studies when different489

protocols are used. Our study points to the need for further effort in this regard, which may490

reveal interesting findings about the complex interactions between soil, disturbance and tree491

diversity in southern African woodlands. Alternatively, Gourlet-Fleury et al. (2011) found492

that environmental filtering of fast-growing species with low wood density on resource poor493

soils resulted in a decoupling of the soil fertility - AGB relationship. It is possible that at494

regional scales, variation in species composition could offset resource availability constraints495

on AGB. However, unlike Gourlet-Fleury et al. (2011) disturbance by fire in our study region496

may further complicate this environmental filtering effect.497

4.4 Vegetation type responses498

All four vegetation types produced similar results in the simple SEM, with a positive total499

effect of species diversity on AGB, the majority being indirectly via structural diversity. This500

demonstrates the robustness of our results, showing they are generalisable across vegetation501

types in southern Africa. It also demonstrates that similar ecosystem processes are occurring502

in these vegetation types, despite variation in species composition, overall species richness503

and mean biomass.504

Core miombo and sparse miombo / Baikiaea woodland vegetation exhibited a small negative505

direct effect of tree species diversity on AGB, while the total effect, incorporating the indirect506
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effect via structural diversity, remained positive in these vegetation types. Compared to ex-507

Acacia and Mopane woodlands, miombo woodlands have higher median tree species richness.508

Ex-Acacia and Mopane woodlands are dominated by fewer tree species, notably Senegalia509

spp. in ex-Acacia woodlands and Colophospermum mopane in Mopane woodlands, which can510

produce large canopy dominating trees in the so-called “Cathedral mopane”. We postulate511

that the slight negative effect of tree species richness on AGB in miombo woodlands may be512

due to an increase in interspecific competition through canopy crowding, but that this effect513

is not present in ex-Acacia and Mopane woodlands, where the top level of the woodland514

canopy is dominated often by a single species.515

Higher functional redundancy among tree species in miombo woodlands may lead to smal-516

ler trees with lower AGB in the most diverse plots, more resembling thicket vegetation and517

suppressing the few species which tend to create high biomass, such as Julbernadia and Bra-518

chystegia spp.. In the species-poor Mopane and ex-Acacia woodlands however, the addition519

of extra species may fill a greater proportional niche space, thus increasing total AGB more.520

Despite Mopane woodland having very low species diversity generally, with often monospecific521

stands (Timberlake et al., 2010), a positive effect of tree species diversity on AGB was522

observed. In previous studies across multiple biomes it has been found that the effect of523

adding species on ecosystem function is stronger in low diversity assemblages (Cardinale et524

al., 2006; Srivastava & Vellend, 2005). This has been attributed to an increase in functional525

redundancy as species diversity increases. Mopane woodlands also have a negligible effect of526

species diversity on structural diversity. This may be due to the particular functional forms527

of species which co-exist with C. mopane, many of which are small shrub-like trees rather528

than large canopy trees (Timberlake et al., 2010). Larger canopy trees tend to have greater529

variation in physical structure (Seidel et al., 2019) which would drive an effect of species530

diversity on structural diversity as we observed in miombo woodlands.531

Ex-Acacia woodlands showed the strongest total effect of species diversity on AGB and was532

the only vegetation type to show a significant positive direct effect of species diversity on AGB.533

Ex-Acacia woodlands also had relatively low median species richness compared to miombo,534

but the addition of new species appears to make a larger difference to the AGB of these plots535

than in Mopane woodlands. We suggest that this is due mostly to the particular identity536

of species found in ex-Acacia woodlands and their contribution to ecosystem functioning.537

Unlike Mopane woodlands, ex-Acacia woodlands contain a wider variety of species which can538

grow to large canopy trees, albeit at low densities, especially in transition zones with miombo539

woodlands. Additionally, many more species species in ex-Acacia woodlands are found in the540

Mimosoideae and Papilionoideae sub-families, of which most are nitrogen-fixing (Tedersoo541

et al., 2018). Nitrogen availability is often a limiting factor in productivity, making nitrogen-542

fixing species strong competitors. It is possible that in ex-Acacia dominated woodlands,543

the presence of a large number of nitrogen-fixing tree species reduces functional redundancy,544

meaning that the effect of adding species on ecosystem function saturates at a higher species545
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richness.546

5 Conclusions547

In this study we found that even in highly disturbed southern African woodlands, there exists548

a generalisable positive association between tree species diversity and ecosystem function,549

quantified as above-ground woody biomass (AGB). Our findings contribute to our under-550

standing of a universal biodiversity-ecosystem function relationship, one which is moderated551

in a predictable manner by environmental covariates and their interaction with biodiversity552

and ecosystem structure. We found that the multiple vegetation types which comprise south-553

ern African woodlands exhibit similarities in the relationship between species diversity and554

woody biomass, suggesting that similar processes operate across the region to determine eco-555

system function. We advocate for explicit inclusion of environmental covariates in regional556

scale models of biodiversity and ecosystem function. We assert that this is necessary to557

develop our understanding of the biodiversity-ecosystem function relationship in real-world558

ecosystems, to progress from experimental mesocosms. We found that much of the effect559

of species diversity on biomass exists as an indirect effect by increasing the structural di-560

versity of trees, exemplifying a key mechanism by which tree species diversity determines561

ecosystem function in savannas, woodlands and forests, where trees comprise a significant,562

canopy-forming component. The presence of a stem density threshold above which the effect563

of tree species diversity on AGB increases clearly implies the presence of niche complement-564

arity effects in southern African woodlands, an aspect which has often been overlooked in565

previous studies despite its intuitive logic as a determinant of niche complementarity effects566

in wooded ecosystems. Our study shows that biodiversity change through extensive human-567

induced land use change in this region will have the greatest negative impact on ecosystem568

function in areas of high stems density, and in certain vegetation types, specifically Mopane569

and ex-Acacia woodlands. This raises concerns about the robustness of these ecosystems to570

further resource extraction and biodiversity loss. Finally, our results provide further evidence571

of the complex interaction of factors governing biomass and therefore carbon dynamics in572

disturbance-driven wooded ecosystems, which currently represent the greatest uncertainty in573

the global terrestrial carbon sink.574
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6 Tables575

Table 1: Description of the biogeographical clusters to which each plot in the study was assigned. Indicator species were generated using
Dufrene-Legendre indicator species analysis (Dufrêne & Legendre, 1997) implemented with indval() from the labdsv R package (Roberts,
2019) and represent species which define the given cluster. Dominant species were identified by choosing the species with the largest mean
plot level proportional AGB (Above-Ground woody Biomass) within each cluster. N = number of plots in cluster. Numeric values of species
richness, stems ha-1 and AGB represent medians and interquartile ranges (75th percentile - 25th percentile).

Cluster Dominant species Indicator species N Species
Richness

Stem density
(stems ha-1)

AGB
(t ha-1)

Core miombo
Brachystegia spiciformis
Julbernardia paniculata
Brachystegia boehmii

Parinari curatellifolia
Uapaca kirkiana

Brachystegia spiciformis
523 20(16.9) 204(142.5) 44.2(36.11)

ex-Acacia
Spirostachys africana

Senegalia burkei
Senegalia nigrescens

Euclea racemosa
Vachellia nilotica

Spirostachys africana
188 12(10.3) 181(166.5) 54.5(61.33)

Mopane
Colophospermum mopane
Androstachys johnsonii

Kirkia acuminata

Colophospermum mopane
Psuedolachnostylis maprouneifolia

Lannea discolor
58 10(10.2) 186(125.6) 42.7(32.83)

Sparse miombo / Baikiaea
Baikiaea plurijuga
Burkea africana

Pterocarpus angolensis

Burkea africana
Baikiaea plurijuga

Pterocarpus angolensis
466 12(13.7) 178(129.5) 36.9(26.98)
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Table 2: Model fit statistics for Structural Equation Models investigating the effects of tree
diversity and stem density on AGB (Figure 4). N = number of plots in cluster, χ2 = Chi-
squared fit statistic, DoF = model degrees of freedom, CFI = Comparative Fit Index, TLI
= Tucker-Lewis Index, RMSEA = Root Mean Square Error of Approximation, R2 AGB =
R-squared of AGB (Above-Ground Biomass).

Cluster N χ2 DoF CFI TLI RMSEA R2 AGB

Core miombo 523 78.670 6 0.904 0.759 0.140 0.490
ex-Acacia 188 9.570 6 0.952 0.879 0.130 0.830
Mopane 58 19.880 6 0.834 0.584 0.240 0.510

Sparse miombo / Baikiaea 466 43.870 6 0.914 0.784 0.130 0.580
All 1235 91.380 6 0.937 0.843 0.120 0.490

18



7 Figures576

Core miombo ex−Acacia Mopane Sparse miombo / Baikiaea
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0°
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Figure 1: The locations of the 1235 plots used in this study, with respect to the distribution of mesic savanna vegetation according to Hopkins
& White (1987). Each panel shows plots categorized by their vegetation type as defined by the vegetation types in Table 1.
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Figure 2: Conceptual Directed Acyclic Graph (DAG) showing the theoretical relationships
between environmental factors, tree species diversity, tree structural diversity, stem density,
and AGB (Above-Ground Woody Biomass). Hypothesised paths of causation are depicted
as arrows from predictor to response. Open arrow heads track the direction of each arrow
along its path.
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Figure 3: Correlation matrix of standardised observed variables used in the SEMs (Structural
Equation Models), with Pearson correlation coefficients (r) coloured according to sign (+ve
red, −ve blue) and shaded by strength of correlation. Correlation coefficients marked by
a circle indicate that the 95% confidence interval of r overlapped zero. Colours of variable
names group them into latent variables used in the SEMs: red = soil fertility, blue = disturb-
ance, turquoise = water availability, green = tree species diversity, purple = tree structural
diversity. See Table S1 for a full assessment of correlation fit statistics.
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Figure 4: Path diagram with regression coefficients for the tree diversity SEM (Structural
Equation Model), including plots from all vegetation clusters. Latent variables are shown as
circles while observed variables are shown as rectangles. Standardised path coefficients are
shown as solid arrows pointing from predictor to response with the effect size of the path
coefficient expressed in terms of standard deviations on the latent variable response scale.
The observed variables that inform the latent variables are connected by dotted arrows, and
observed variables with loadings set to one are connected by dashed arrows. Measurement
errors of exogenous variables are omitted for clarity.
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Figure 6: Line plots showing the variation in SEM (Structural Equation Model) path coef-
ficients among latent variables, across datasets with different mean stem density. Smoothed
lines are loess curves with ±1 standard error shaded bars. AGB = Above-Ground woody
Biomass. Arrows in plot titles indicate causal paths in SEM models. Where multiple arrows
are present, as in c), this indicates an indirect pathway via an intermediate variable. a) shows
the direct effect of species diversity on structural diversity. b) and d) show the direct effects
of species diversity and structural diversity on AGB, respectively. c) shows the indirect ef-
fect of species diversity on AGB via structural diversity. e) shows the total effect of species
diversity on AGB, incorporating both the direct effect and the indrect effect via structural
diversity.
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Figure 7: Path diagram with regression coefficients for the SEM (Structural Equation Model)
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rectangles. Standardised path coefficients are shown as solid arrows pointing from predictor to
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Supporting Information

Additional supporting information may be found in the online version of this article.

Figure S1 Histograms of raw untransformed observed variables used in final analyses.

Figure S2 Histograms of observed variables transformed to achieve a normal frequency
distribution.

Figure S3 Bivariate scatter plots for each observed variable used in SEMs, based on
hypothesised paths of causality.

Figure S4 Unstandardised path coefficients for full SEM model.

Table S1 Table of correlation fit statistics for each pairwise Pearson correlation test of
observed variables used in Structural Equation Models.
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