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Introductions: John Godlee, working on the GEO-TREES project and currently
based at the Smithsonian Institution in Washington DC.

I'm going to talk about the different ways that forests accumulate biomass,

and how environment and community composition drive those differences.



Background: The GEO-TREES initiative =

Tropical forests are diverse. Variable in structure, function and biomass.

Species determine how environmental conditions translate into biomass and structure.
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Tropical forests are incredibly diverse -- often containing hundreds of species
within just a few hectares.

Species differ widely in their life-history strategies, both within a single forest and
across regions.

And it’s these life history strategies that shape how environmental conditions
translate into the biomass stocks we observe.

The environment sets the upper limit for potential biomass stocks, but species
traits determine how that potential is realised and expressed through forest
structure.

In the GEO-TREES project, we’re building a network of forest monitoring sites to
facilitate global mapping of woody biomass stocks.

and, along the way this data will also help us to understand the complex
interactions between community composition, ecosystem function, and
biomass.
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The model of GEO-TREES is to map variation in biomass stocks at fine spatial-
scales across forest landscapes, using existing sites from many different plot
networks that represent the diversity of global tropical forests.

We do this using a combination of tree inventory data, airborne LiDAR and
terrestrial LiDAR.

These data can then be used to calibrate and validate biomass estimates from
earth observation products across much larger areas.

<CLICK>

Today I'll share preliminary results from a study exploring the drivers of this fine-
scale spatial variation in woody biomass,

using just the tree inventory data.




Methods: Sites and data

Do forests follow different “functional recipes” to achieve high biomass?
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In particular, we want to understand how tree community composition and life-
history strategies shape spatial patterns in biomass stocks, alongside variation
in environment.

<CLICK>

In this study we assembled tree inventory data from wet tropical forests around
the world, largely from the ForestGEO network.

We're planning to expand this dataset to include more forest types, so if you have
a site with more than 15 ha of tree inventory data, and good soil and topographic
data, please come and talk to me afterwards.

<CLICK>
At each site we calculated species-level values of four functional traits, each of

which, in isolation, should be positively associated with biomass stocks,
increasing either the rate of biomass production, or the biomass residence time.




These traits are:

the potential growth rate, potential survival rate, maximum tree size, and wood
density.

We then divided the tree inventory data into 50x50 m quadrats.

At this scale, each quadrat contains enough trees to characterise structure and
composition, while still capturing environmental variation across the plots.

For each 50x50 m quadrat, we calculated community-weighted means of these
traits, effectively giving us a measure of the functional composition of each
quadrat.

We also estimated the total above-ground woody biomass stock using standard
allometry methods.

Our expectation is that different forests will optimise different functional
pathways to achieve high biomass stocks, depending on biogeography and
environmental conditions. In other words, we think that the relative importance
of each of these traits for biomass is likely to vary from forest to forest.



Results: Broad climatic gradients aren’t informative ’
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If we start by looking across broad environmental gradients, we find substantial
local variation in biomass stocks within sites -- often much greater than the
variation among sites.

And across these environmental gradients, there’s no strong overall trend in
biomass.

This is somewhat surprising because at coarse global scales climate is a strong
driver of biomass stocks. Locally however, we see that biomass stocks are
extremely variable.

So if we model biomass purely as a top-down, climate-driven process at coarse
spatial scales, we risk missing a great deal of this fine-scale variation.



Results: Site-specific effects of local environment

Above-ground woody biomass (Mg ha)
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In contrast, local environmental factors such as soils and topography show
much stronger relationships with biomass stocks at this scale.

But, the strength and even the direction of these relationships varies among
sites.

This could reflect either: non-linear responses across different parts of a broader
environmental gradient, or interactions between local and regional
environmental variables.

So, biomass varies at fine spatial scales and this variation is well-explained by

local environment, but the form of these relationships varies by site, suggesting
that while the underlying processes are deterministic, they are context-
dependent.




Results: Composition is highly predictive of biomass
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Next, we asked whether community composition matters for biomass stocks.

We ran a Principal Coordinates Analysis on species relative basal area in each
quadrat to produce axes representing compositional variation that are
independent of traits and biomass.

When we use these axes to predict biomass stocks within individual sites, we
find that composition is strongly predictive.

This tells us that composition does matter, which supports the premise of our
question:

which aspects of life history strategy drive high biomass? What is it about these
species?




Results: Many different recipes for high biomass
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When we examine how each of our functional traits relates to biomass, we
encounter complex patterns.

First, we do see clear relationships between traits and biomass within sites,
which is reassuring, because it suggests our assumption is correct, that these
traits do play a role in driving biomass stocks.

But the slopes of each trait-biomass relationship vary across sites.

Similar biomass stocks can arise from very different trait combinations
depending on the site, suggesting different pathways for accumulating biomass
in different forests.

<CLICK>

At some sites, certain traits even show negative relationships with biomass. All
else being equal each trait should increase biomass, so these negative slopes
point to strong co-variation among traits and functional trade-offs in community
assembly.




Results: Importance of community traits for biomass
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To further disentangle how these traits relate to biomass, we built a structural
causal model linking our four functional traits to two ecosystem functions:
biomass production and biomass residence time, which together determine
biomass stocks over the long-term.

We included random slopes for each site so that the effects of traits on
production and residence time could vary with environmental context.

Looking at the marginal effects of each trait on ecosystem function, potential
growth rate emerges as the strongest overall driver of biomass production, while
potential survival is the strongest overall driver of residence time -- exactly as we
would expect.

However, there’s substantial variation among sites in how important potential
growth is for biomass relative to the other traits.

and, interestingly, at some sites, such as Sinharaja in Sri Lanka, higher potential
growth rates actually reduce biomass residence time, suggesting a community
dominated by species with fast-turnover strategies.




Wood density consistently provides a small boost to biomass production across
sites, but it has no detectable effect on residence time.

Maximum tree size, on the other hand, has very little influence on either
production or residence time.



Summary: Drivers of fine-scale variation in biomass
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* Local environment matters, but
differently depending on the forest.

* Community composition is a key
predictor of biomass stocks. Forests
are not functionally neutral.

* Forests use different “functional
recipes” to accumulate biomass.
Relative importance of traits varies
among sites.

* Functional composition shapes forest
structure.

To recap, in this study we examined what drives fine-scale spatial variation in
biomass stocks across tropical forests.

We explored the roles of regional and local environment, community
composition, and how the importance of specific functional traits for
maintaining high biomass stocks varies among forests.

We found that biomass stocks vary enormously within tropical forests at fine
spatial scales.

Broad climatic gradients don't explain this variation, but local environment does,
though these relationships are site-specific.

We found that community composition is a strong predictor of biomass stocks,
showing that forests are not functionally neutral.

We also found that different forests follow different "functional pathways” to
accumulate biomass, with traits influencing different aspects of ecosystem
function to varying extents depending on site.
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Summary: Perspectives and next steps

* Ground truth data (e.g. GEO-TREES) are
vital to understand the mechanisms of
biomass accumulation.

Next:

* How do specific environmental factors
determine the optimal trait
combinations for biomass stocks?

* How does spatial grain affect the
importance of community composition
for biomass stocks?

Satellite missions such as GEDI, BIOMASS and NISAR, supported by ground-
truth data from GEO-TREES, will soon provide wall-to-wall high-resolution
biomass estimates. These data are incredibly valuable, but they only tell us how
much biomass there is, not the ecology of how it is produced or maintained.

Our results show that if you want to understand how biomass accumulates and
how itis likely to respond to perturbations such as climate change and
biodiversity loss, you need to incorporate community functional composition
and local environment into models of forest dynamics.

The next steps in this analysis will be to understand how specific environmental
variables determine the optimal trait combinations to produce high biomass
forests,

and to understand how spatial grain affects the relative importance of regional
environment, local environment and community composition for observed
biomass stocks.
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