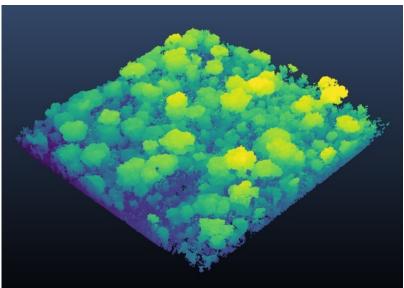
Multi-stemmed trees: Mortality rates, Biogeographic patterns, and biomass dynamics

John L. Godlee john.godlee@ed.ac.uk

THE UNIVERSITY of EDINBURGH School of GeoSciences

My background

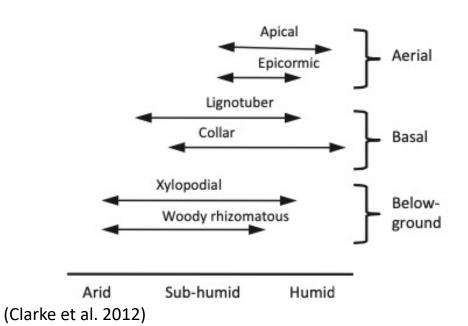
• Applied functional ecologist


SEOSAW

- Ecosystem productivity, biogeography, structure
- Tropical savannas, dry forests, temperate woodlands
- PhD (2021) at University of Edinburgh
 - Biodiversity and ecosystem function in African savannas
- Post-Doc (2021-now) SECO: dry tropical carbon dynamics
 - Global multi-network plot analyses
 - Where and why is woody biomass changing?
 - How does biogeography affect responses to change?

Plot database manager Manage two field sites (Angola, Namibia) Bicuar National Park, SW Angola, long term vegetation monitoring

Terrestrial LiDAR, canopy occupancy



Resprouting and multi-stemmed growth

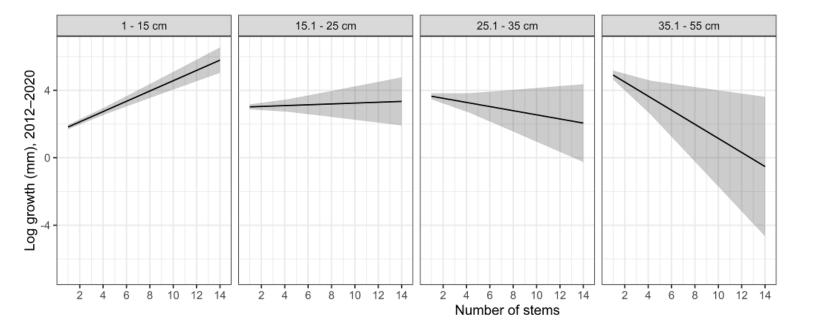
Resprouting: New shoot growth triggered by disturbance.

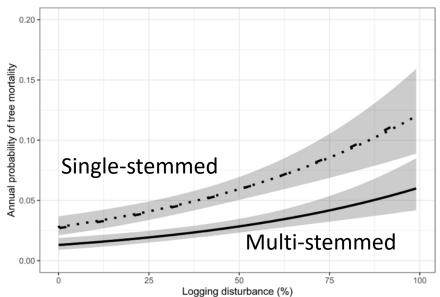
Sprouting is common and might be the ancestral state of woody angiosperms (Bond and Midgley 2001).

Basal and below-ground resprouting leads to multi-stemmed trees:

Multi-stemmed Terminalia sp.

Post-fire epicormic sprouting in Eucalyptus sp.


Post-fire basal sprouting in Fraxinus ornus


Multi-stemming enhances tree survival and growth in Borneo's logged forests

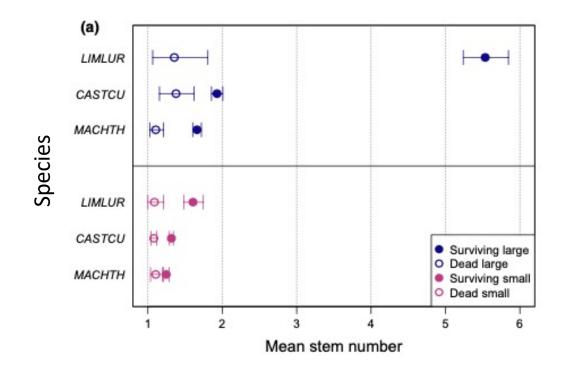
Jakub Kvasnica^{a,*}, Radim Matula^b, Martin Rejžek^a, Robert M. Ewers^c, Terhi Riutta^d, Edgar C.

Turner^e, Reuben Nilus^f, and Martin Svátek^a [Preprint]

- Borneo, secondary forest
- Multi-stemmed trees get growth benefit only when small.
- Multi-stemmed trees experience reduced mortality

DOI: 10.1111/jvs.12858

RESEARCH ARTICLE


Journal of Vegetation Science

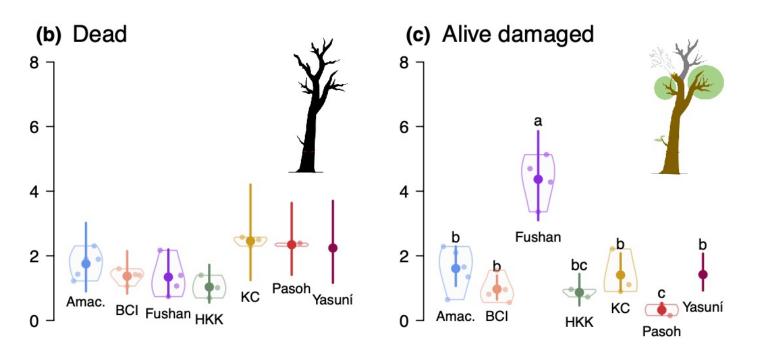
۲

Multi-stemming and size enhance survival of dominant tree species in a frequently typhoon-disturbed forest

Hsiang-Hua Wang² | Chang-Fu Hsieh⁵

Sheng-Hsin Su^{1,2} | Biing T. Guan¹ | Chia-Hao Chang-Yang³ | I-Fang Sun⁴

- Fushan, Taiwan ForestGEO site (25 ha)
- Old-growth oak–laurel wet forest •
- Multi-stemming common by basal sprouting (<1.3 m).
- Multi-stemmed trees grew shorter.
- Shorter trees are sheltered from high winds.

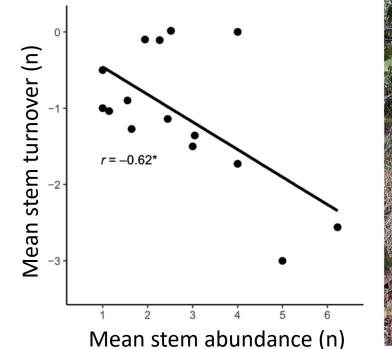

Global Change Biology WILEY

RESEARCH ARTICLE

DOI: 10.1111/gcb.16687

Damage to living trees contributes to almost half of the	
biomass losses in tropical forests	

Daniel Zuleta¹ | Gabriel Arellano^{2,3} | Sean M. McMahon^{1,4} | Salomón Aguilar⁵

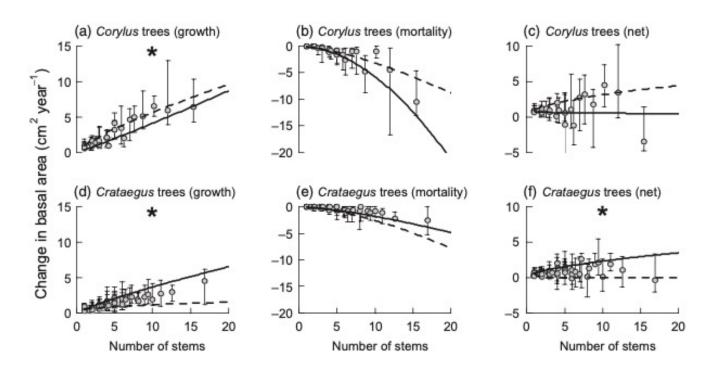

- 7 tropical ForestGEO sites (Neotrop. and Asia)
- Old-growth oak-laurel wet forest
- Disturbance-prone forests had high branch and stem loss, but very low individual mortality.
- Does multi-stemming mediate biomass turnover through nonlethal biomass loss?

Article Multi-Stemmed Habit in Trees Contributes Climate Resilience in Tropical Dry Forest

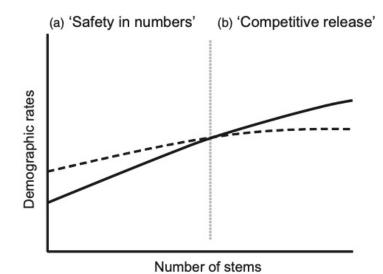
Ian M. Ware ^{1,*}, Rebecca Ostertag ², Susan Cordell ¹, Christian P. Giardina ¹, Lawren Sack ³, Camila D. Medeiros ³, Faith Inman ¹, Creighton M. Litton ⁴, Thomas Giambelluca ^{5,6}, Grace P. John ⁷ and Christine Scoffoni ⁸

- Hawaii tropical dry forest with frequent droughts.
- Multi-stemming resulted in increased stem turnover
- Following drought, multistemmed species accumulated stems faster.
- Multi-stemmed trees exhibit traits which confer drought resistance.

MDPI


Journal of Ecology

Journal of Ecology 2012, 100, 171-183


doi: 10.1111/j.1365-2745.2011.01879.x

The more stems the merrier: advantages of multi-stemmed architecture for the demography of understorey trees in a temperate broadleaf woodland

Andrew J. Tanentzap¹*, Edward P. Mountford², Arnold S. Cooke³ and David A. Coomes¹

- Temperate UK woodland (mixed ash)
- Multi-stemming increased tree growth and survival under herbivory.
- When browsers removed, stem survival reduced in multistemmed trees.

Summary – research gaps

Multi-stemming:

- is common in disturbed systems.
- consistently reduces mortality in disturbed systems.
- can increase growth in small understorey trees.
- generally produces shorter trees.
- generally increases biomass turnover.

We don't know:

- global spatial patterns and causes of multistemmed architecture.
- how multi-stemming affects ecosystem function across environmental gradients.
- does multi-stemming affect forest functioning in the same way, everywhere?

The plan?!

1. When is multi-stemming (MS) beneficial?

H₁: MS reduces mortality in disturbed systems.

H₂: MS reduces mortality risk in juveniles can increase risk in large trees.

2. How does MS affect biomass dynamics?

H₃: MS increases biomass turnover.

H₄: MS increases carbon storage in highly disturbed systems.

3. Where is MS prevalent?

H₅: Prevalence of multi-stemming is a function of disturbance regime and biogeography.

Data requirements:

- Multi-census tree stem growth:
 - Species identity
 - Stems grouped into trees
 - Plot locations and census dates
- Tree species phylogeny
- Remote sensed disturbance regime:
 - Drought
 - Fire
 - Herbivory (?)

References

SECO: Resolving the current and future carbon dynamics of the dry tropics (<u>https://blogs.ed.ac.uk/seco-project/</u>)

SEOSAW: A Socio-Ecological Observatory for Studying African Woodlands (<u>https://seosaw.github.io/</u>)

Bond, W. J., & Midgley, J. J. (2001). Ecology of sprouting in woody plants: the persistence niche. In Trends in Ecology & amp; Evolution (Vol. 16, Issue 1, pp. 45–51). Elsevier BV. <u>https://doi.org/10.1016/s0169-5347(00)02033-4</u>

Clarke, P. J., Lawes, M. J., Midgley, J. J., Lamont, B. B., Ojeda, F., Burrows, G. E., Enright, N. J., & Knox, K. J. E. (2012). Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. In New Phytologist (Vol. 197, Issue 1, pp. 19–35). Wiley. https://doi.org/10.1111/nph.12001

Kvasnica, J., Matula, R., Rejžek, M., Ewers, R. M., Riutta, T., Turner, E. C., Nilus, R., & Svátek, M. (2023). Multi-Stemming Enhances Tree Survival and Growth in Borneo's Logged Forests. Elsevier BV. <u>https://doi.org/10.2139/ssrn.4326512</u>

Su, S., Guan, B. T., Chang-Yang, C., Sun, I., Wang, H., & Hsieh, C. (2020). Multi-stemming and size enhance survival of dominant tree species in a frequently typhoon-disturbed forest. In K. Woods (Ed.), Journal of Vegetation Science (Vol. 31, Issue 3, pp. 429–439). Wiley. https://doi.org/10.1111/jvs.12858

Tanentzap, A. J., Mountford, E. P., Cooke, A. S., & Coomes, D. A. (2011). The more stems the merrier: advantages of multi-stemmed architecture for the demography of understorey trees in a temperate broadleaf woodland. In Journal of Ecology (Vol. 100, Issue 1, pp. 171–183). Wiley. <u>https://doi.org/10.1111/j.1365-2745.2011.01879.x</u>

Ware, I. M., Ostertag, R., Cordell, S., Giardina, C. P., Sack, L., Medeiros, C. D., Inman, F., Litton, C. M., Giambelluca, T., John, G. P., & Scoffoni, C. (2022). Multi-Stemmed Habit in Trees Contributes Climate Resilience in Tropical Dry Forest. In Sustainability (Vol. 14, Issue 11, p. 6779). MDPI AG. <u>https://doi.org/10.3390/su14116779</u>

Zuleta, D., Arellano, G., McMahon, S. M., Aguilar, S., Bunyavejchewin, S., Castaño, N., Chang-Yang, C., Duque, A., Mitre, D., Nasardin, M., Pérez, R., Sun, I., Yao, T. L., Valencia, R., Krishna Moorthy, S. M., Verbeeck, H., & Davies, S. J. (2023). Damage to living trees contributes to almost half of the biomass losses in tropical forests. In Global Change Biology. Wiley. <u>https://doi.org/10.1111/gcb.16687</u>