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1 Introduction
You will need to use R and a spreadsheet program like Microsoft Excel to complete this practical session.
Please speak up if you don’t have access to the relevant software.
The teal coloured text, e.g. EXAMPLE example, refers to R code, variable names, or file names.

The boxes contain questions or tasks for you to complete on your own. Record your thoughts
and answers to each question in a notebook or a word document.

In this practical you will:
• practice manipulating forest tree stem census data in R.
• estimate tree biomass using an allometric equation.
• calculate growth, recruitment, and mortality rates.
• compare sites across environmental gradients to determine drivers of biomass dynamics.
• calculate species and size-class specific growth rates.
• predict the biomass dynamics of an unmeasured site.

2 Datasets
You can download all the data needed for this practical from the LEARN page for this session. Save each of
the files to a folder on your computer. There is also an R script (example_script.R) which contains examples
of all the code you should need in this practical. Try not to rely on this too much, only have a peek if you are
really stuck.
stems.csv contains a table of tree stem measurements from 10 forest sites across the Brazilian Amazon. The
data are synthetic, but approximate real data in terms of species composition, population dynamics, and
number of stems. Each site consists of a 1 ha (100x100 m) square plot. Each site received 10 censuses, one
every five years, where all tree stems >5 cm diameter were measured. Each row is a stem measurement at a
particular time point. When a tree dies, it is given diameter and height measurements of 0 (zero) for that
census and all future censuses. Here is a description of the columns in the table:

• site_id - ID of the site
• species_name - species name
• diam - stem diameter (cm)
• height - tree height (m)
• census_date - year of the census
• stem_id - ID of the stem

sites.csv contains a table of site information for each of the sites in stems.csv. The site_id column
links to the site_id column in stems.csv. The lon and lat columns contain the longitude and latitude
coordinates of the site, respectively. The remaining columns (beginning with bio) contain average climate data
for each site, which was extracted from the “BioClim” dataset (https://www.worldclim.com/bioclim). The
BioClim data are calculated as the mean of annual values for the years 1970-2000, and have been aggregated
to 0.083 × 0.083 degree cells, which is approximately 8 km2 at the equator. Here is a description of each of
those columns:

• bio1 = Annual Mean Temperature
• bio2 = Mean Diurnal Range (Mean of monthly (max. temp−min. temp))
• bio3 = Isothermality (bio2/bio7) (×100)
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• bio4 = Temperature Seasonality (standard deviation ×100)
• bio5 = Max Temperature of Warmest Month
• bio6 = Min Temperature of Coldest Month
• bio7 = Temperature Annual Range (bio5−bio6)
• bio8 = Mean Temperature of Wettest Quarter (3 months)
• bio9 = Mean Temperature of Driest Quarter (3 months)
• bio10 = Mean Temperature of Warmest Quarter (3 months)
• bio11 = Mean Temperature of Coldest Quarter (3 months)
• bio12 = Total Annual Precipitation
• bio13 = Precipitation of Wettest Month
• bio14 = Precipitation of Driest Month
• bio15 = Precipitation Seasonality (Coefficient of Variation)
• bio16 = Precipitation of Wettest Quarter (3 months)
• bio17 = Precipitation of Driest Quarter (3 months)
• bio18 = Precipitation of Warmest Quarter (3 months)
• bio19 = Precipitation of Coldest Quarter (3 months)

3 Loading data
First, open a new script in R (I recommend using RStudio) and set the working directory (e.g. setwd()) to
the location of stems.csv and sites.csv.
Then, load the data into R:
stems <- read.csv("./stems.csv")
sites <- read.csv("./sites.csv")

Have a look at the data to understand its structure. Confirm that all the columns listed above are present in
the dataframes:
str(stems)
head(stems)

str(sites)
head(sites)

Make some quick histograms of the data to understand the distributions of each variable, for example:
hist(stems$diam)
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Figure 1: Histogram of stem diameters.

4 Calculating stem-level biomass using an allometric equation
Our ultimate goal is to describe the biomass dynamics of the region, and understand variation in biomass
dynamics among sites. Firstly then, we need to estimate the biomass contained in each tree stem using the
field measurements in stems.
We can get wood density (g cm-3) for each species in our dataset using an online database. Load the {BIOMASS}
package:
library(BIOMASS)

If the package doesn’t load, you may need to install it first, using install.packages("BIOMASS").
Look at the help file for the getWoodDensity() function:
?getWoodDensity

The function takes arguments of genus, species, stand (site), and other optional arguments.
We need to split the species names in stems$species_name to get a separate column for genus and species.
The code below takes everything before or after the “space” character (\\s) and replaces it with nothing ("").
E.g. “Burkea africana” becomes genus: “Burkea”, species: “africana”:
stems$genus <- gsub("\\s.*", "", stems$species_name)
stems$species <- gsub(".*\\s", "", stems$species_name)

Now we can get the wood density values for each individual:
wd <- getWoodDensity(stems$genus, stems$species, stems$site_id,
region = "SouthAmericaTrop")

wd contains a dataframe with the mean wood density (wd$meanWD) for each individual in stems. So we can
add wd to stems:
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stems$wd <- wd$meanWD

Next we can use the pan-tropical allometric equation from Chave et al. (2014) to estimate the biomass (AGB,
above-ground biomass) of each stem:

B = 0.0673 × (ρ×H ×D2)0.976/1000

stems$agb <- (0.0673 * (stems$wd * stems$height * stems$diamˆ2)ˆ0.976)/1000

There are many sources of uncertainty in this empirical model used to estimate biomass. List
as many as you can.

5 Visualising changes in demography over time
Next, let’s have a look at how biomass and number of stems changes within each site over time. To summarise
the data we will use the {dplyr} and {tidyr} packages, which provide many handy functions for manipulating
tabular data.
library(dplyr)
library(tidyr)

The code below counts the number of living stems for each census within each site.
stems_ab_summ <- stems %>%
group_by(site_id, census_date) %>%
summarise(n_alive = sum(diam != 0))

There should be 100 rows in stems_ab_summ, as we have 10 sites, each with 10 censuses.
Now we can create a plot of number of stems over time for each site:
ggplot(data = stems_ab_summ, # dataframe
aes(x = census_date, y = n_alive, colour = site_id)) + # Axes and groupings
geom_point() + # Adds points
geom_path() # Adds lines between points

Figure 2: Number of stems over time for each site.
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Adapt the code above to calculate the total biomass for each census per site and visualise it
using ggplot(). Hint: use sum(agb) instead of sum(diam != 0).

Which sites are decreasing in number of stems, which are increasing? Does this match the
trends seen in biomass change over time?

We can also calculate the number of deaths recorded at each census. Recall that dead stems are recorded
with a diameter of zero:
stems_mort_summ <- stems %>%
group_by(site_id, census_date) %>%
summarise(n_cum_mort = sum(diam == 0)) %>% # Cumulative mortality per census
mutate(n_mort = n_cum_mort - lag(n_cum_mort)) %>% # Mortality per census
dplyr::select(-n_cum_mort) # Remove intermediate column

Visualise the number of deaths over time by adapting the code you used above to visualise
the number of living stems over time.

If we know the number of stems at each census, and the number of stems which died between each census, we
can calculate the number of recruits recorded at each census, by re-arranging this simple equation:

Nt = Nt−1 +R−M

Where Nt is the number of living stems at time t, Nt−1 is the number of living stems at time t− 1 (i.e. the
previous census), R is the number of recruits, and M is the number of deaths (mortality).
We can re-arrange the equation so it becomes:

R = Nt −Nt−1 +M

Using lag(n_alive) to calculate Nt−1, calculate the number of recruits (R) at each census
point, then plot the results using the same ggplot() code as above. Do recruitment rates
appear to be increasing or decreasing over time? What simple parametric statistical test could
you perform to check if there is a significant increase or decrease over time?

6 Calculating rates of production and loss
While the visualisations above give us some idea of the population and biomass dynamics of each site over the
census period, to derive numbers which we can use to measure the carbon sink effect, and which we can use
to parameterise an empirical model of biomass change, we need to calculate rates of production and loss.
Let’s measure average biomass dynamics across the entire census period, 1980 to 2025, 45 years.
First, extract the first and last census:
stems_fl <- stems %>%
filter(census_date %in% c(1980, 2025))

Then, measure the biomass at the first and last census for each site:
stems_fl_summ <- stems_fl %>%
group_by(site_id, census_date) %>%
summarise(agb = sum(agb)) %>%
pivot_wider( # Transform the data from "long" format to "wide" format

names_from = census_date,
names_prefix = "agb_",
values_from = agb)
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We can now calculate biomass change across the census period for each site:
# Absolute biomass change (delta-AGB)
stems_fl_summ$dagb <- (stems_fl_summ$agb_1980 - stems_fl_summ$agb_2025)

# Mean biomass change per year
stems_fl_summ$dagby <- stems_fl_summ$dagb / (2025-1980)
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DecompositionGrowth
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Figure 3: NPP-centric model of forest carbon fluxes.

Using the structural model of fluxes from the lecture (above), describe what part of the model
the value of dagb represents.

Now, lets calculate rates of production and loss across the census period. Recall that we can calculate simple
production and loss per year using the equations:

Ps = BT −Bs0

T

Ls = B0 −Bs0

T

where BT is the biomass at the final census, Bs0 is the biomass at the first census of the individuals which
survived to the final census, B0 is the biomass at the first census, and T is the length of the census period, in
years.
Run the code below to calculate the various parameters for the equations for each site:
# Create a list, where each element is a dataframe containing a single site
stems_split <- split(stems, stems$site_id)

# Get the first census
first_census <- min(stems$census_date)

# Get the last census
final_census <- max(stems$census_date)

# For each site in the list:
params <- lapply(stems_split, function(x) {

# Get the stem IDs for the stems which survived through the whole census period
surv <- x[x$census_date == final_census & x$diam != 0, "stem_id"]

# Find the biomass of the survivors at the first census
Bs0 <- sum(x[x$census_date == first_census & x$stem_id %in% surv, "agb"])

# Find the biomass at the final census
BT <- sum(x[x$census_date == final_census, "agb"])

# Find the biomass at the first census
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B0 <- sum(x[x$census_date == first_census, "agb"])

# Get the census interval length
int <- final_census - first_census

# Create a dataframe for output
out <- data.frame(site_id = unique(x$site_id), Bs0, BT, B0, int)

# Return the dataframe
return(out)

})

# Join the dataframes together
params_df <- do.call(rbind, params)

Using the equations above and the parameters in params_df, calculate the simple production
and loss for each site, and add as a column to params_df.
Referring back to the lecture slides, can you also calculate instantaneous rate of production
(P ) and loss (L). How do they differ from the “simple” estimates?

Using the rates of production and loss we can calculate the rate of net biomass change (δB/δT ):

δB/δT = Ps − Ls

If δB/δT > 0 biomass is increasing. If δB/δT < 0 biomass is decreasing. Calculate δB/δT
for each site, does it match match the visualisations of biomass over time?

Up to now, we have only calculated rates of biomass production and loss as an average across
the entire census period. How might this affect our estimates of productivity?

Using a single site as an example, calculate production (Ps) and loss (Ls) using the periods
1980-2000, and 2000-2020, then calculate the mean of these rates across the two periods, how
does it compare to the values calculated across the entire period?

Under what circumstances would a longer census interval (i.e. a longer time between censuses)
lead to an under-estimate of total productivity?

7 Environmental drivers of biomass dynamics
Now that we have calculated some rates of productivity and loss (params_df), we can use simple statistical
analyses to see if there is any relationship between biomass dynamics and environment.
First, we need to join the parameters dataframe to the sites dataframe, using the column site_id as a key:
sites_rates <- full_join(sites, params_df, by = "site_id")

Now, we can run linear models of the rates vs. the environmental drivers. For example:
mod_ex <- lm(Ps ~ bio19, data = sites_rates)
summary(mod_ex)

Use ggplot() to visualise the relationship between bio19 and Ps and add a linear model line
of best fit using geom_smooth(method = "lm"). Is there a strong relationship between these
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variables? Why not? Hint: the sites are in the Amazon rainforest.

Figure 4: Example of plot showing relationship between bio14 and Ls.

Look through the list of BioClim variables on the first page of this worksheet. Pick some
variables which you think might have an impact on some of the biomass metrics you have
calculated above. Construct a hypothesis which predicts the direction of the effect of the
variable on that metric. Run a linear model and inspect the model coefficients. Does the
model support your hypothesis?

We can use the same simple linear models to predict the biomass of an unmeasured site, given
it’s environment.
First, you must calculate the mean period biomass (Bw) for all the sites in our dataset. This
is a weighted measure of the average biomass observed in the plot over the course of the census
period. It is calculated as:

Bw = BT −B0

log( BT

B0
)

Imagine a site with a mean annual precipitation of 2000 mm per year. Using a linear model of
bio12 vs. mean period biomass (Bw) for each site in stems, predict the mean period biomass
of the unmeasured site. Hint: predict() can be used to extract predicted values of a response
variable from a model, by feeding it a dataframe with values of each explanatory variable in
the model.

8 Predicting biomass dynamics at an unmeasured site
Load the files unk_stems.csv:
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unk_stems <- read.csv("unk_stems.csv")

unk_stems contains a table, with the diameters, heights and species for stems recorded at a single site (Z)
during a single census in 1990. The site is situated close to site D, only about 1 km away. This site was
abandoned after the first census because it was difficult to access during the wet season.

Our goal is to predict what the biomass of this site might be in 2022.
First, calculate the biomass of each stem in 1990.
Then, using the intrinsic rate of change r for site D, extrapolate the biomass estimate of site Z
forward to 2022.
Remember r is calculated as:

r = ln(BT

B0
)/T

We have essentially created an empirical model to describe the biomass dynamics of an
unmeasured site, and parameterised that model using field data from a neighbouring site.
What assumptions are we making in this model? List as many as you can.
All the rates of production and loss we have calculated up to now assume a linear process. If
we use these rates to predict biomass change in an unmeasured system, the predicted biomass
will continue to increase or decrease indefinitely, which is unrealistic over a long timescale.
Using your understanding of forest successional processes and interactions among individuals
in a population, think of some ways we might extend our model of forest growth to prevent
this indefinite growth or decline.

9 Size-class and species specific rates of growth
In our previous model we assumed that the growth rates of all stems within a site were equal, using a single
rate of biomass production calculated at the site level. This might be an over-simplification. We know that in
tropical forests small stems in the understorey may grow very slowly, until they reach a certain size which
allows them to compete with the larger canopy trees. Similarly, growth rates often decline when a tree is near
death. We also know that tree species differ in their life-history strategies, with some trees growing quickly,
often with the trade-off that they are at greater risk of death from drought or disease.
To check whether it is necessary to add size-class- and species-dependent growth rates to our model, we can
measure the growth rates of individuals within different size classes and species.
Arbitrarily, we can calculate the growth rate for stems in these diameter size classes (cm):

• 5-10
• 10-20
• 20-40
• 40-60
• 60-80
• 80-100
• 100+

Remembering that we can calculate diameter growth over time (GD) as:

GD = Dt −Dt−1

T

We can first calculate the annual diameter growth rate for each stem across each census interval:
stems_d <- stems %>%
filter(site_id == "D") %>% # Only keep site D
arrange(census_date) %>% # Order the data by census date
group_by(stem_id) %>%
mutate(
diam_g = diam - lag(diam), # Calculate diameter growth at each time point
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census_int = census_date - lag(census_date), # Calculate census interval
diam_g_ann = diam_g / census_int) %>% # Annual measure of diam. growth

filter(
diam != 0, # Remove dead stems
!is.na(diam_g_ann)) # Remove first census, which has no growth measurement

Then “bin” our diameter data from site D by size class, using the cut() function:
stems_d$diam_cut <- cut(stems_d$diam, breaks = c(5,10,20,40,60,80,100,1000),
labels = c("5-10", "10-20", "20-40", "40-60", "60-80", "80-100", "100+"))

Now we can calculate the mean annual growth rate for each size class:
# Calculate mean diameter growth per size class
stems_d_g <- stems_d %>%
group_by(diam_cut) %>%
summarise(diam_g_ann_mean = mean(diam_g_ann))

We can then run a simple Analysis of Variance test (ANOVA) to check whether there are significant differences
in annual diameter growth rates among size classes:
size_class_aov <- aov(diam_g_ann ~ diam_cut, data = stems_d)
summary(size_class_aov)

Is there a significant difference among size classes in their annual diameter growth rates?

Create a boxplot to visualise the distributions of diameter growth rates within each size class.
Does the distribution match your understanding of how trees grow? Hint: use geom_boxplot()
with ggplot() to create a boxplot.

Using the code above as a guide, investigate whether species differ in their annual diameter
growth rates. Would it improve our model of biomass dynamics for site Z if we included
species-specific growth rates? Hint: use species_name rather than diam_cut.
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